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Abstract— Reaching and grasping of objects in an every-
day-life environment seems so simple for humans, though so
complicated from an engineering point of view. Humans use a
variety of strategies for reaching and grasping anything from
the simplest to the most complicated objects, achieving high
dexterity and efficiency. This seemingly simple process of reach-
to-grasp relies on the complex coordination of the musculoskele-
tal system of the upper limbs. In this paper, we study the
muscular co-activation patterns during a variety of reach-to-
grasp motions, and we introduce a learning scheme that can
discriminate between different strategies. This scheme can then
classify reach-to-grasp strategies based on the muscular co-
activations. We consider the arm and hand as a whole system,
therefore we use surface ElectroMyoGraphic (SEMG) record-
ings from muscles of both the upper arm and the forearm.
The proposed scheme is tested in extensive paradigms proving
its efficiency, while it can be used as a switching mechanism
for task-specific motion and force estimation models, improving
EMG-based control of robotic arm-hand systems.

Index Terms: ElectroMyoGraphy (EMG), Muscular Co-
Activation Patterns, Synergistic Profiles, Random Forests, Box-
plot Zones, Learning Scheme, Classification

I. INTRODUCTION

It has been almost 30 years since surface ElectroMyo-
Graphic (EMG) signals have been proposed to detect the
user’s intention for the control of advanced prosthetic hands
[1]. However, the high-dimensionality and complexity of
the human musculo-skeletal system hinders the development
of EMG-based control systems, capable of discriminating
a plethora of reach-to-grasp or grasping strategies, that
can provide effortless use of advanced prosthetic hands or
arm-hand systems. The introduction of muscle and motor
synergies into the EMG-based control interfaces has been
proposed in the past for the upper limb [2], however the
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synergy-based EMG control of the hand and the whole arm-
hand system have not been studied to the same extent.

Recent studies mainly focus on the kinematic investigation
of human hand synergies, both in the motor and kinematic
space, based on motion capture systems. Optical markers
were mounted on 23 different points on the hand and data
were acquired during an unconstrained haptic exploration
task in [3]. Principal components analysis was used in order
to evoke a set of hand postures that is representative of most
naturalistic postures during object manipulation. A limited
number of postural synergies were identified across a wide
variety of object grasps, using camera-based motion capture
system in [4] and dataglove measurements in [5] and [6].

Glove measurements combined with EMG activity from
subjects using the American Sign Language (ASL) manual
alphabet were also used to reveal temporal synergies across
muscles during hand movement in [7]. The ability of muscle
synergies to form a predicting framework to associate EMG
patterns with untrained static hand postures was assessed in
[8]. Classification methods to discriminate between indepen-
dent digit movements as well as between different postures
were proposed in [9] and [10]. In [11] forearm surface EMG
were used for the feed-forward control of a hand prosthesis,
using machine learning techniques capable of discriminating
grip postures in real-time. Despite the promising results, the
latter study employs only three different grip types (power
grasp, index precision grip and middle-ring-pinky precision
grip), which is a factor that limits the method’s applicability.
Finally, in [12] authors capture myoelectric activity from
two adult macaque monkeys grasping 12 objects of different
shapes, in order to distinguish between EMG activation
patterns that have been associated with different grasping
postures.

In this paper, we focus on the characterization of different
muscular co-activation patterns for reach-to-grasp move-
ments for a wide variety of daily life objects as well
as different object positions in 3D space. For doing that,
we record EMG signals from the muscles of the human
forearm and the upper arm while executing reach-to-grasp
movements. Then, we use statistical methods to extract and
visualize muscular co-activation patterns captured in our
recordings. Furthermore we build EMG classifiers in order
to discriminate between different reach-to-grasp strategies
for different objects and object positions. The proposed
methodology can be used as a switching mechanism that
can help us improve EMG-based human force and motion
estimation, by employing strategy-specific decoders.
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Fig. 1: Birdview of the experimental setup consisting of three (3) everyday
life objects, a marker, a rectangle and a mug, placed on three (3) different
shelves of a bookcase, in five (5) different positions

The rest of the paper is organized as follows: Section II
analyzes the methods, the equipment and the experimental
protocol, Section III presents and compares the results of
different classification methods, while Section IV concludes
the paper.

II. MATERIALS AND METHODS
A. Apparatus

The purpose of the experiments conducted was to study
the muscular co-activations during different reach-to-grasp
tasks. Five healthy subjects (21, 24, 27, 28 and 40 years old)
participated in the experiments. The subjects gave informed
consent and the procedures were approved by the Institu-
tional Review Board of the National Technical University of
Athens. All subjects performed the experiments with their
dominant hand (the right hand for all subjects).

Objects of varying shape and size were placed on different
positions inside the 3D arm workspace. For this purpose, a
bookcase was utilized and the objects were placed on three
different shelves. The vertical distance between concecutive
shelves was approximately thirty-five (35) cm. The subject’s
arm was initially in resting position, fully relaxed, pointing
downwards. Each subject was instructed to move his arm
in order to perform reach-to-grasp movements towards an
object, grasp the object, and once the object is firmly
grasped to lift it approximately 5 cm from the initial setting.
During the training phase, the user was instructed to perform
repeated reach to grasp and grasp movements towards five
positions in 3D space, reaching and grasping one of the three
different daily life objects used. Those were a rectangular-
shaped object, a marker and a mug. Thirty (30) trials per
object placed at each of the five possible positions in 3D
space were conducted, while a resting time of 1 minute was
given to the subjects between them. The starting position of
the arm-hand system was kept constant for all trials. The
horizontal distance of two locations on the same shelf was
60 cm. The second shelf has only one middle object position.
The experimental setup is presented in Fig. 1.

In order to achieve easy, portable and fast to use training
schemes several researchers have chosen over the years
to place the EMG electrodes in specific regions but in
random positions [13]. We believe that the next generation
of epidermal electronics [14] will make the electrode posi-
tioning faster and easier, thus in this paper we choose to
take advantage of the higher signal to noise ratio that the

specific electrode positions offer, reducing crosstalk e.t.c.
More specifically: Surface EMG signals were recorded using
single differential surface EMG electrodes (DE-2.1, Delsys
Inc.). The signals were acquired and conditioned using an
EMG system (Bagnoli-16, Delsys Inc). The digitization and
acquisition was done using a signal acquisition board (NI-
DAQ 6036E, National Instruments).

Sixteen muscles of the forearm and the upper-arm were
recorded. The muscles chosen are used with the following
order: deltoid anterior, deltoid middle, deltoid posterior,
teres major, trapezius, biceps brachi, brachioradialis, triceps
brachii, flexor pollicis longus, flexor digitorum superficialis,
flexor carpi ulnaris, flexor carpi radialis, extensor pollicis
longus, extensor indicis, extensor carpi ulnaris and extensor
carpi radialis. The selection of the muscles, as well as
the placement of the electrodes, was based on the related
literature [6], [15]. For the myoelectric activity to be cap-
tured, surface bipolar active EMG electrodes were used
following the direction given in [16]. EMG signals were
band-pass filtered (20-450 Hz) and sampled at 1 kHz. Then,
EMG signals were full-wave rectified and low-pass filtered
(Butterworth, fourth order, 8 Hz).

B. Muscular co-activation patterns extraction

EMG recordings from all experiments were pre-processed
and epochs of data were created, including the different
reach-to-grasp strategies captured in the experiments. Then,
all data were resampled at 100 Hz, where each new value
at the new frequency was calculated as the mean value
of ten (10) samples of the original frequency (1kHz). The
technique for resampling the EMG recordings for these kinds
of experiments is described in [7]. The final EMG activations
from all muscles are used as a function of samples in the
low frequency (100 Hz). Based on those profiles, the onset
of muscular activation is defined by the direct comparison of
the amplitude of each muscle compared to it’s relaxed state.
Finally, the epochs including only the muscular activation
during the task are created, and used in order to formulate
synergistic profiles using a novel statistical representation
technique that we call ”Boxplot Zones”.

In descriptive statistics, a boxplot (alt. box-and-whisker
plot) is a convenient way of graphically depicting groups
of numerical data, through the following five-number sum-
maries: smallest observation (sample minimum), lower quar-
tile (Q1), median (Q2), upper quartile (Q3), and largest
observation (sample maximum) [17]. Boxplot zones are
an equivalent of boxplots, while more visually informative
representation of muscular co-activations or synergistic pro-
files. Boxplot zones are splitted in three different layers.
The first layer includes the median line that connects the
medians of all boxplots. The second layer consists of the
box zone (blue zone) connecting the boxes that include
all the values between the lower and the upper quartile,
while the third layer consists of the whisker zone (white
zone) connecting the whiskers that mark the largest and the
smallest observation.
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Fig. 2: Boxplot Zones visualization of different muscular co-activation
patterns across sixteen (16) muscles of the upper arm and the forearm for
one subject (Subject 1) performing reach to grasp movements towards five
(5) different positions, to grasp three (3) different objects.
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Fig. 3: Boxplot Zones visualization of different muscular co-activation
patterns across sixteen (16) muscles of the upper arm and the forearm for
three (3) different subjects performing reach to grasp movements towards
five (5) different positions, to grasp a specific object (Rectangle).
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Fig. 2 shows boxplot zones visualization of the muscular
co-activation patterns across sixteen (16) muscles of the
upper arm and the forearm for one subject (Subject 1) per-
forming reach to grasp movements towards five (5) different
positions, in order to grasp three (3) different objects. Fig.
3 shows the muscular co-activation patterns differentiation
across the 16 muscles of the human upper-arm and fore-
arm while the subject performs reach to grasp movements
towards five (5) positions in 3D space for a specific object
(rectangular-shaped object). As it is shown, the co-activation
of muscles are significantly different between the different
reach-to-grasp movements, although the same fingers and
joints of the upper-arm were involved, but for a different
task.

In order to assess the statistical significance of muscular
co-activation patterns differentiation, statistical tests were
conducted. Lilliefors test, (an adaptation of the Kolmogorov-
Smirnov test) was used to test the null hypothesis that our
myoelectric data come from a normal distribution. The test
returned the logical value 7 = 1 rejecting the null hypothesis
at the 5% significance level (p =0.05), so our data are not
normally distributed.

Thus we choose to test the significance of the differen-
tiation of the muscular co-activation patterns for different
strategies, using non parametric tests such as the Kruskal-
Wallis and the Wilcoxon rank sum test. More specifically the
Kruskal-Wallis compares the medians of the EMG activity
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Fig. 4: Means and confidence intervals of EMG activity across eight (8)
muscles of the upper arm and the eight (8) muscles of the forearm for one
subject (Subject 1) performing reach to grasp movements towards three (3)
different objects placed at the same position (Pos 3).
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Fig. 5: Means and confidence intervals of EMG activity across eight (8)
muscles of the upper arm and the eight (8) muscles of the forearm for one
subject (Subject 1) performing reach to grasp movements towards a marker
placed at five (5) different positions.

of each muscle for different co-activation patterns (used
by different strategies), and returns the p value for the
null hypothesis that all samples are drawn from the same
population (or equivalently, from different populations with
the same distribution).

The Wilcoxon rank sum test performs a two-sided rank
sum test of the null hypothesis that data of different muscular
co-activation patterns are independent samples from identi-
cal continuous distributions with equal medians. For more
information regarding the statistical procedures used in this
paper, the reader should refer to [18].

We performed the tests in order to check the differentiation
of musclular co-activation patterns for three cases: i) for
the same strategy between different subjects ii) between
reach to grasp movements towards different positions in
3D space iii) between reach to grasp movements towards
three different objects placed at a specific position in 3D
space. Confidence levels for all analysis were set at 95%.
Both tests null hypothesis for all three cases was rejected,
proving muscular co-activation patterns differentiation for
different subjects and tasks. Fig. 4 and Fig. 5, present the
means and the confidence intervals of EMG activity for
different muscular co-activation patterns for the case of
different objects (Fig. 4) as well for the case of different
positions (Fig. 5). Therefore, we conclude that the muscular
co-activations vary significantly not only between different
subjects but also between different reach-to-grasp strategies,
and therefore should be considered and analyzed as subject-
specific and task-specific characteristics.
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C. Multiclass Classification of Reach to Grasp Movements

Synergistic profiles depicted in Fig. 2 and Fig. 3 imply a
significant differentiation of muscular co-activation patterns
between the different reach-to-grasp strategies that we inves-
tigated. To take advantage of this differentiation, we apply
a wide variety of classification techniques in our dataset, in
order to compare them in terms of accuracy and time required
for training and consequently assess their ability to discrimi-
nate between different reach-to-grasp strategies. Moreover in
this section we introduce a novel classifier (random forests
classifier), which we prove that outperforms all others in
terms of classification accuracy while performing quite well
as far as time required for training is concerned. Such types
of learning schemes can boost the performance of a grasping
controller used by an EMG-based teleoperation scheme or
an advanced prosthetic hand, since a larger repertoire of
grasping strategies can be decoded from muscular recordings.

In human-driven robotics, classification techniques should
not be just accurate but also compatible with multiclass
classification problems. More specifically in EMG-based
studies, we have to classify a multidimensional feature space
(m channels of EMG data capturing the myoelectric activity
of the selected muscles) and we need to discriminate between
multiple classes. These classes may incorporate information
for different subspaces of the workspace, characterizing
strategies for reach to grasp movements towards different
positions in 3D space (where the EMG signals appear to
have different muscular co-activation patterns) or information
for the different objects, characterizing strategies for reach-
to-grasp movements towards various objects (one class per
object) placed in the same position. Thus the selected clas-
sifier must be highly accurate, fast enough for large datasets
and be able to face multiclass problems.

In this study six different types of classification techniques
were used; Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), a k-Nearest Neighbours (k-
NN) classifier, an Artificial Neural Network (ANN) classifier,
a Support Vector Machine (SVM) classifier and a Random
Forest classifier. The input to all classifiers was a matrix of
size 16 X N including N samples of the processed activity
of the sixteen (16) recorded muscles. The LDA is a method
used in pattern recognition problems, in order to find a linear
combination of features which characterize or separate two
or more classes of objects. The resulting combination can
be used as a linear classifier. The QDA involves a quadratic
classifier which is used in statistical classification in order to
separate measurements of two or more classes of objects by
a quadratic surface. The QDA can be described as a more
general version of the LDA.

The k-NN algorithm is a method for classifying objects
based on the closest to them training examples, in the feature
space. k-NN is a type of lazy learning where the function
is locally approximated and computation is deferred until
classification. The idea of kNN classifier is that an object is
classified by a majority vote of its neighbors and assigned in
the class where most of its k nearest neighbors belong [19].

The support vector machine (SVM) is a supervised learn-
ing method that is commonly used for classification analysis.
The standard SVM classifier as proposed by Vapnik in 1963
is a non-probabilistic binary linear classifier using an optimal
hyperplane algorithm. Although later on Bernhard Boser,
Isabelle Guyon and Vapnik [20] suggested a way to create
nonlinear classifiers by applying the well-known kernel trick
one of the main disadvantages of the SVM approach is
the fact that is computationally expensive and that in order
to face multi-class problems it must reduce the multi-class
problem into multiple binary classification problems.

Neural networks have been successfully used as a tool for
classification by numerous studies in the past [11] serving as
a promising alternative to traditional classification methods.
Neural networks can adjust themselves to the data without
any knowledge for the underlying model (giving the fact
that they are universal functional approximators) and they
can also be used as a nonlinear method modeling real world
complex relationships.

Random forests classifier was proposed by Tin Kam Ho
of Bell Labs [21] and Leo Breiman [22] and is an ensemble
classifier that consists of many decision trees and outputs the
class that is the mode of the class’s output by the individual
trees. Some of the main advantages of the random forests
technique is the fact that runs efficiently on large databases,
and is able to handle thousands of input variables without
variable deletion.

Regarding the training procedure, we used the five-fold
cross-validation method to measure the accuracy of our
classifiers. To reduce variability, multiple rounds of cross-
validation were performed using different partitions, and the
validation results were averaged over the rounds.
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Fig. 6: Comparison of two reach-to-grasp strategies. First subplot presents
the distance of the two strategies in the m-dimensional space where m=16
the number of the EMG channels. The second subplot focuses on the
classification results per sample while the last two subplots present the
boxplot zones of the different strategies. The two strategies are reach to
grasp movements towards a marker: in position I (Strategy I) and in position
II (Strategy II).

In Fig. 6 we present a typical classification problem of dis-
criminating (using EMG) two different strategies for reaching
a specific object placed in two different positions, grasping it
and returning to the initial position. More specifically in the
first subplot we can see how the distance between the two
movements (caused by the strategies) in the m-dimensional
space is evolved (m = 16, the number of the muscles).
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Distance between two strategies give us also a measure of
their separability, i.e. how easily they can be discriminated.
Then in the second subplot of Fig. 6 the accumulation of
misclassified samples is reasonable for the time periods that
the distance between the two strategies is not significant
(beggining and end of the experiment where the movements
are close to the starting position). Finally in subplots 3 and
4 of Fig. 6 we can see that the differentiation of these two
strategies can be illustrated efficiently using boxplots zones.

ITI. RESULTS
A. Classifiers Comparison

In this section we compare the state-of-the-art classifiers
against the Random Forests classifier that we introduce
for the problem of discriminating different reach to grasp
strategies from myoelectric activity. Classification success
rates (%) are listed in Table I. As it can be seen Random
Forests outperform the performance of the most well-known
classifiers such as SVM and ANN classifiers.

As far as training time and speed of execution are
concerned, Random Forests outperform SVM and Neural
Network, performing quite well also compared to the linear
and quadratic methods such as the QDA and the LDA.
More specifically we performed SVM based classification
with a RBF kernel and we constructed a single hidden layer
Neural Network with ten (10) hidden units, trained with the
Levenberg-Marquardt backpropagation algorithm for neural
network-based classification. kNN classifier was compared
for the simplest case where k = 3 and Random Forests
were grown with ten (10) trees for speed. The training task
that was used to compare classifiers in terms of speed of
execution, was to learn how to discriminate between two
reach-to-grasp movements towards different objects placed:
in Position I (Class I) and in Position II (Class II). Results
are reported in Table II. The benchmark was performed
using MATLAB (Mathworks) in a standard PC with Intel(R)
Core(TM) I5 CPU 611 @3.33GHz and 4GB RAM (DDR3)
memory.

B. Classification Results

As previously mentioned, individual muscular activity is
consistent across experiments under the same conditions,
while significantly different across different reach-to-grasp
parameters i.e. different shape and position of the objects.
Therefore, and in order to assess the classification methods
accuracy, we define the success rate as the percentage of
EMG data points classified to the correct reach-to-grasp task.
It must be noted that the classification is done for every
acquired EMG data point, allowing the system to be able
to decide in real-time the grasping task, and even switch
between different tasks online. Finally, we must note that
classification results presented below are the average values
over the 5 rounds of cross-validation method applied.

First, we present the classification results across different
reach to grasp strategies for a specific position and different
objects for all subjects in Table III. In Table IV we use
Random Forests in order to compare the classification

accuracy across different reach to grasp strategies for a
specific object and varying object position for all subjects.
Finally in Table V we present the classification accuracy of
random forests across different reach to grasp strategies in
different positions for all objects and subjects.

TABLE I: Comparison of Classifiers for discriminating two different grasp-
ing strategies for two objects placed across three different positions in 3D
space (Subject 1)

Classifiers Positions Mug Rectangle

Pos I 96.75% 83.36%

LDA Pos IIT 96.50% 90.40%
Pos V 91.44% 95.00%

Pos 1 95.34% 80.52%

QDA Pos 11T 97.30% 91.45%
Pos V 92.30% 95.60%

Pos 1 96.33% 81.63%

kNN Pos IIT 98.20% 94.50%
Pos V 96.50% 98.68%

Pos I 94.67% 84.63%

ANN Pos 1IT 98.50% 94.76%
Pos V 94.52% 98.87%

Pos I 97.46% 87.42%

SVM Pos IIT 98.81% 94.50%
Pos V 98.00% 96.50%

Pos 1 99.67% 89.02%

Random Forests Pos III 100% 96.50%
Pos V 98.87% 99.00%

TABLE II: Comparison of classifiers in terms of time required for training,
for a dataset of sixteen dimensions (16 muscles).

Classifiers Samples Training Time

2 Classes of 1500 0.011 sec

LDA 2 Classes of 15000 0.058 sec

2 Classes of 1500 0.005 sec

QDA 2 Classes of 15000 0.051 sec

2 Classes of 1500 0.014 sec

kNN 2 Classes of 15000 1.65 sec

2 Classes of 1500 1.06 sec

ANN 2 Classes of 15000 16.05 sec

2 Classes of 1500 0.34 sec

SVM 2 Classes of 15000 7.09 sec

2 Classes of 1500 0.06 sec

Random Forests | 2 Classes of 15000 0.87 sec

TABLE III: Classification accuracy across different reach to grasp strategies
towards a specific position and 3 different objects, for all subjects (Using
Random Forests )

Positions Objects (Classes)
Mug Marker Rectangle
Pos T 87.82% (+£4.52) 91.15% (£5.31%)  88.82% (+4.63%)
Pos 11 84.24% (£5.99%)  90.40% (£4.52%) 91.81% (+5.41%)
Pos 11T 84.78% (£5.78%)  86.72% (£5.16%)  85.39% (+£4.95%)
Pos IV 83.24.% (£6.14%)  84.17% (£6.21%)  86.93% (+4.83%)
Pos V 86.55% (£4.39%)  89.32% (£3.81%)  90.74% (£3.78%)

TABLE IV: Classification accuracy across different reach to grasp strategies
for a specific object and five different object positions for all subjects (Using
Random Forests)

Positions Objects

(Classes) Mug Marker Rectangle
Pos I 86.01% (+4.16%) | 89.83% (+4.01%) | 87.01% (£6.57%)
Pos 11 83.76% (+£6.24%) | 87.95% (£4.78%) | 88.43% (£5.51%)
Pos IIT 89.74% (+£3.41%) | 87.23% (£4.92%) | 90.30% (£4.01%)
Pos IV 91.23% (£2.39%) | 90.05% (+£4.86%) | 90.51% (+3.92%)
Pos V 91.80% (£3.45%) | 92.34% (+£2.69%) | 90.90% (+3.01%)

TABLE V: Classification accuracy across different reach to grasp strategies
in different positions for all objects and subjects (Using Random Forests)

Positions
Pos I Pos 11 Pos 111 Pos IV Pos V
88.51%  86.29% 87.91% 89.20%  91.02%
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C. Majority Vote Criterion

The electromechanical delay (EMD) of a muscle is defined
as the time interval between the onset of the myoelectric
activity, indicating its activation by the neural system and
the onset of the resulting change in the mechanical variable
observed (e.g. movement or force). This delay ranges from
25 to 100 ms for different muscles and tasks. Thus, onset of
the EMG signals (electrical event) precedes onset of muscle
contraction (mechanical event). Given the fact that we are
capturing the EMG signals with a sampling frequency of 1
kHz, we need at least 25 samples for a grasping strategy to
be detected (practically most of the times over 50 samples).

In order to take advantage of the EMD, we use a sliding
window of size M = 50, inside which we apply the majority
vote criterion [19]. The majority vote criterion, classifies all
the samples, of a set of M samples, in the class that was the
most common between them, i.e. the class that gathers the
most votes. The use of the Majority Vote criterion (MVC)
inside a window of length M, can improve significantly the
classification results acquired with the proposed methods. As
shown in Table VI, the classification results were improved
by using the majority vote criterion in a sliding window
of 50 samples. However, the choice of window size affects
computational complexity and therefore it must be carefully
chosen in order not to compromise the real-time character
of the methodology.

TABLE VI: Classification accuracy across different reach to grasp strategies
for a specific object (Marker) and varying object position for Subject 1,
using Random Forests and Random Forests combined with the Majority
Vote Criterion

Object Subjectl
Rectangle Pos 1 Pos 11 Pos 11T Pos IV Pos V
Random Forests | 87.03%  91.61% 90.51% 86.25%  92.61%
RF with MVC 100% 100% 100% 100% 100%
Muscular .
Co-Activation Slgna.l [ EMG
Processing Acquisition
Patterns
Features L Object
Selection Classification Decision
Synergic l l - —
Profiles Position Decoding Task Spe.cn’lc
Visualization Decision | | MOd_El > Decoding
(Boxplot Zones) Selection Model

Fig. 7: Block diagram of the proposed methodology.

IV. CONCLUSIONS AND DISCUSSION

In this paper we recorded muscular activity from sixteen
(16) muscles of the forearm and the upper-arm during reach-
to-grasp movements towards different objects and object
positions in 3D space. Boxplot zones were introduced as
a novel statistical representation technique capable to give
a direct visual estimate of the muscular co-activation pat-
terns. Furthermore an emerging classifier based on Random
Forests, not previously used in neurobotics was used to
classify EMG signals in different classes, according to the

reach-to-grasp features (i.e. object size and position). A block
diagram is shown in Fig. 7.

The methodology proposed here is able to benefit a switch-
ing mechanism that will trigger task-specific (reach-to-grasp
strategy) motion and force estimation models improving
EMG-based control of robotic arm-hand systems.
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